Synthesis, Characterization and Biological Studies of Some Transition Metal Complexes with Pyrazine Schiff Base Hydra zone Ligand
PDF

Keywords

Hydra zone, Metal(II) Complexes, Thermogravimetric Analysis, Magnetic Susceptibility, Biological activity.

How to Cite

Bhaskar, R., Ladole, C., Salunkhe, N., & Aswar, A. (2020). Synthesis, Characterization and Biological Studies of Some Transition Metal Complexes with Pyrazine Schiff Base Hydra zone Ligand. Jordan Journal of Chemistry (JJC), 15(2), 61-72. Retrieved from http://jjc.yu.edu.jo/index.php/jjc/article/view/332

Abstract

New pyrazine carbohydra zone ligand N'-(1-(5-chloro-2-hydroxyphenyl) ethylidene) pyrazine-2-carbohydrazide (H2L), prepared by the condensation of equimolar amounts of pyrazine-2-carbohydrazide with 2-hydroxy-5-chloroacetophenone in methanol, reacts with suitable metal salt precursors to give complexes of two general formulae: [M(HL)(Cl)(H2O)2] {M = Mn(II), Co(II), Ni(II) and Cu(II)} and [M(L)(H2O)] {M = Zn(II) and Cd(II)}.  Structure of ligand was confirmed by elemental analysis, IR, 1H and 13C NMR and mass spectroscopy, while synthesized complexes were additionally characterized by magnetic susceptibility measurements, molar conductivity measurements, XRD, ESR (for Cu(II)), SEM and thermogravimetric analysis. Spectroscopic studies confirmed a tridentate ONO donor behavior of the ligand towards the central metal ion. The molar conductance (12–17 W–1 cm2 mol–1) measurements in DMSO indicated non-electrolytic nature. Thermal behavior of the complexes suggests their extended stability and the thermal decomposition generally proceeds via partial loss of the organic moiety and ends with the formation of respective metal oxide as a final product. Various kinetic and thermodynamic parameters were evaluated using the Coats-Redfern method. The solid-state electrical conductivity of the complexes measured in the temperature range 303-463 K suggested their semiconducting behavior. The ligand and its metal complexes were screened in vitro for their antibacterial activity against the Gram-positive bacteria S. aureus and B. subtilis, the Gram-negative bacteria E. coli and S. typhi and the fungi C. albicans and A. niger. The obtained results indicated improved activity of the complexes compared to the free ligand against all studied bacterial and fungal species.

PDF